试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图,四棱锥P﹣ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E是AB的中点,F是PC的中点.
(Ⅰ)求证:面PDE⊥面PAB;
(Ⅱ)求证:BF∥面PDE.
如图,在四棱锥P﹣ABCD中,AB∥CD,PA⊥AD,CD⊥AD,PA=AD=CD=2AB,E,F分别为PC,CD的中点,DE=EC.
(Ⅰ)求证:平面ABE⊥平面BEF;
(Ⅱ)求锐二面角E﹣BD﹣C的余弦值.
如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.
(1)求证:平面CBE⊥平面CDE;
(2)求二面角C﹣BE﹣F的余弦值.
(Ⅰ)求证:直线AF∥平面PEC;
(Ⅱ)求PC与平面PAB所成角的正弦值.
①D1C∥平面A1ABB1;②A1D1与平面BCD1相交;
③AD⊥平面D1DB;④平面BCD1⊥平面A1ABB1.
其中正确结论的序号是{#blank#}1{#/blank#}.
试题篮