试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求PB和平面PAD所成的角的大小;
(2)证明AE⊥平面PCD.
(Ⅰ)求证:AC∥平面DEF;
(Ⅱ)若二面角D﹣AB﹣E为直二面角,
( i)求直线AC与平面CDE所成角的大小;
( ii)棱DE上是否存在点P,使得BP⊥平面DEF?若存在,求出 的值;若不存在,请说明理由.
(Ⅰ)求证:面ADE⊥面 BDE;
(Ⅱ)求直线AD与平面DCE所成角的正弦值..
(Ⅰ)画出直线l的位置;
(Ⅱ)设l∩A1B1=P , 求线段PB1的长.
试题篮