试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图,在四棱锥P﹣ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD的中点,求证:
(1)EN∥平面PDC;
(2)BC⊥平面PEB;
(3)平面PBC⊥平面ADMN.
如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是梯形,其中AD∥BC,BA⊥AD,AC与BD交于点O,M是AB边上的点,已知PA=AD=4,AB=3,BC=2.求证:BC⊥PM.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)在棱PC上是否存在点F使得BF∥平面EAC?若存在,指出F的位置;若不存在,请说明理由.
(Ⅰ)求证: 平面 ;
(Ⅱ)若 ,求直线 与平面 所成的角的正弦值.
试题篮