试题 试卷
题型:解答题 题类:模拟题 难易度:普通
如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,且平面ABCD⊥平面ADEF,AF=FE=AB=AD=2,点G为AC的中点.
(Ⅰ)求证:EG∥平面ABF;
(Ⅱ)求三棱锥B﹣AEG的体积;
(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由
如图直三棱柱ABC﹣A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,则四棱锥B﹣APQC的体积为( )
如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB= , ∠DAB= . 沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.P为AC的动点,根据图乙解答下列各题:
(1)求三棱锥D﹣ABC的体积.
(2)求证:不论点P在何位置,都有DE⊥BP;
(3)在BD弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.
如图,已知四边形ABEF于ABCD分别为正方形和直角梯形,平面ABEF⊥平面ABCD,AB=BC= AD=1,AB⊥AD,BC∥AD,点M是棱ED的中点.
(Ⅰ) 计算圆柱的表面积;
(Ⅱ)计算图中圆锥、球、圆柱的体积比.
试题篮