试题 试卷
题型:解答题 题类:模拟题 难易度:普通
如图,某地要在矩形区域OABC内建造三角形池塘OEF,E,F分别在AB,BC边上,OA=5米,OC=4米,∠EOF= , 设CF=x,AE=y.
(1)试用解析式将y表示成x的函数;
(2)求三角形池塘OEF面积S的最小值及此时x的值.
物理学家和数学家牛顿曾提出了物体在常温环境下温度变化的冷却模型,如果物体的初始温度为θ1℃,空气温度为θ0℃,则tmin后物体的温度f(t)满足:f(t)=θ0+(θ1﹣θ0)•e﹣kt(其中k为正的常数,e=2.71828…为自然对数的底数),现有65℃的物体,放在15℃的空气中冷却,5min以后物体的温度是45℃.
(Ⅰ)求k的值;
(Ⅱ)求从开始冷却,经过多少时间物体的温度是25.8℃?
(Ⅲ)运用上面的数据,作出函数f(t)的图象的草图.
x=( )
试题篮