试题 试卷
题型:解答题 题类:模拟题 难易度:普通
如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC=2.
(Ⅰ)若D为AA1中点,求证:平面B1CD⊥平面B1C1D;
(Ⅱ)在AA1上是否存在一点D,使得二面角B1﹣CD﹣C1的大小为60°.
(1)求证:直线AB1∥平面BC1D;
(2)求证:平面BC1D⊥平面ACC1A;
(3)求三棱锥C﹣BC1D的体积.
(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)当二面角A﹣PB﹣E的余弦值为多少时,直线PC与平面PAB所成的角为45°?
(Ⅰ)证明:平面 ⊥平面 ;
(Ⅱ)若 = ,求二面角 的余弦值.
(1)求证:DE∥平面
(2)若 , 求证:平面平面.
试题篮