题型:解答题 题类:常考题 难易度:普通
组别 | 候车时间 | 人数 |
一 | [0,5) | 2 |
二 | [5,10) | 6 |
三 | [10,15) | 4 |
四 | [15,20) | 2 |
五 | [20,25] | 1 |
城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:min):
(1)求这15名乘客的平均候车时间;
(2)估计这60名乘客中候车时间少于10分钟的人数;
(3)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
分组 | (10,20] | (20,30] | (30,40] | (40,50] | (50,60] | (60,70] |
频数 | 2 | 3 | x | 5 | y | 2 |
已知样本数据在(20,40]的频率为0.35,则样本数据在区间(50,60]上的频率为( )
分组 | 频数 | 频率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合计 | 50 |
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 | a | 1.25a | 1.5a | 1.75a | 2a |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求 的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.
求 的估计值;
(Ⅲ)求续保人本年度的平均保费估计值.
组 别 | 频数 | 频率 |
[145.5,149.5) | 1 | 0.02 |
[149.5,153.5) | 4 | 0.08 |
[153.5,157.5) | 20 | 0.40 |
[157.5,161.5) | 15 | 0.30 |
[161.5,165.5) | 8 | 0.16 |
[165.5,169.5) | m | n |
合 计 | M | N |
试题篮