题型:单选题 题类:常考题 难易度:普通
推销员编号 | 1 | 2 | 3 | 4 | 5 |
工作年限x/年 | 3 | 5 | 6 | 7 | 9 |
推销金额y/万元 | 2 | 3 | 3 | 4 | 5 |
(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;
(2)求年推销金额y关于工作年限x的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.
零件的个数 | 2 | 3 | 4 | 5 |
加工的时间 | 2.5 | 3 | 4 | 5.5 |
参考公式:两个具有线性关系的变量的一组数据: ,
其回归方程为 ,其中
月份 | | | | | | |
广告投入量 | | | | | | |
收益 | | | | | | |
他们分别用两种模型① ,②
分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
| | | |
| | | |
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于 的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程;
(ⅱ)若广告投入量 时,该模型收益的预报值是多少?
附:对于一组数据 ,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
试题篮