题型:解答题 题类:常考题 难易度:普通
在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生 表2:女生
等级 | 优秀 | 合格 | 尚待改进 | 等级 | 优秀 | 合格 | 尚待改进 | |
频数 | 15 | x | 5 | 频数 | 15 | 3 | y |
(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
参考数据与公式:
K2= , 其中n=a+b+c+d.
临界值表:
P(K2>k0) | 0.05 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
优、良、中 | 差 | 总计 | |
实验班 | 48 | 2 | 50 |
对比班 | 38 | 12 | 50 |
总计 | 86 | 14 | 100 |
晚上 | 白天 | 总计 | |
男婴 | 45 | A | B |
女婴 | E | 35 | C |
总计 | 98 | D | 180 |
那么A={#blank#}1{#/blank#},B={#blank#}2{#/blank#},C={#blank#}3{#/blank#},D={#blank#}4{#/blank#},E={#blank#}5{#/blank#}.
P(K2≥k) | … | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 | … |
k | … | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 | … |
每周累计户外暴露时间(单位:小时) |
| | | | 不少于28小时 |
近视人数 | 21 | 39 | 37 | 2 | 1 |
不近视人数 | 3 | 37 | 52 | 5 | 3 |
(Ⅰ)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;
(Ⅱ)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(Ⅱ)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?
近视 | 不近视 | |
足够的户外暴露时间 | ||
不足够的户外暴露时间 |
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
试题篮