题型:解答题 题类:常考题 难易度:普通
某校高三数学备课组为了更好的制定二轮复习的计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题.重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学认为“不过关”,现随机调查了年级50人,他们的测试成绩的频数分别如表:
(1)由以上统计数据完成如下2×2列联表,并判断是否有95%的把认为期末数学成绩不低于90分与测试“过关”是否有关?说明你的理由.
分数低于90分人数 | 分数不低于90分人数 | 合计 | |
过关人数 | |||
不过关人数 | |||
合计 |
(2)在期末分数段[105,120)的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为X,求X的分布列及数学期望.
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 |
K | 2.072 | 2.706 | 3.841 | 5.024 |
K2= .
甲校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 3 | 4 | 7 | 14 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 17 | x | 4 | 2 |
乙校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) |
频数 | 1 | 2 | 8 | 9 |
分组 | [110,120) | [120,130) | [130,140) | [140,150] |
频数 | 10 | 10 | y | 4 |
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 100 |
已知在全部100人中抽到随机抽取1人为优秀的概率为 .
女 | 男 | 总计 | |
喜欢 | 40 | 20 | 60 |
不喜欢 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
(K2≥k) | 0.100 | 0.010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
附表:K2= .
冷漠 | 不冷漠 | 总计 | |
多玩手机 | 68 | 42 | 110 |
少玩手机 | 20 | 38 | 58 |
总计 | 88 | 80 | 168 |
P(K2>k) | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
通过计算求得K2≈11.38,则认为多玩手机与人变冷漠有关系的把握大约为( )
试题篮