题型:解答题 题类:常考题 难易度:普通
2015-2016学年广东省揭阳市普宁一中高一下学期期中数学试卷(理科)
甲抽取的样本数据
编号 | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
性别 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
投篮成 绩 | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
乙抽取的样本数据
编号 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
性别 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
投篮成 绩 | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
(Ⅰ)在乙抽取的样本中任取3人,记投篮优秀的学生人数为X,求X的分布列和数学期望.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
优秀 | 非优秀 | 合计 | |
男 | |||
女 | |||
合计 | 10 |
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.
(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
≥170cm | <170cm | 总计 | |
男生身高 | |||
女生身高 | |||
总计 |
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式:K2=
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 6.635 | 7.879 | 10.828 |
K2= .
理科 | 文科 | 总计 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
总计 | 30 | 20 | 50 |
那么,认为“高中学生的文理科选修与性别有关系”犯错误的概率不超过{#blank#}1{#/blank#}.
月收入 |
[3,4) |
[4,5) |
[5,6) |
[6,7) |
[7,8) |
[8,9) |
频数 |
6 |
24 |
30 |
20 |
15 |
5 |
有意向购买中档轿车人数 |
2 |
12 |
26 |
11 |
7 |
2 |
将月收入不低于6千元的人群称为“中等收入族”,月收入低于6千元的人群称为“非中等收入族”.
(Ⅰ)在样本中从月收入在[3,4)的市民中随机抽取3名,求至少有1名市民“有意向购买中档轿车”的概率.
(Ⅱ)根据已知条件完善下面的2×2列联表,并判断有多大的把握认为有意向购买中档轿车与收入高低有关?
非中等收入族 |
中等收入族 |
总计 |
|||
有意向购买中档轿车人数 |
40 |
||||
无意向购买中档轿车人数 |
20 |
||||
总计 |
100 |
||||
| 0.10 | 0.05 | 0.010 | 0.005 | |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:
试题篮