试题 试卷
题型:解答题 题类:常考题 难易度:普通
在如图所示的空间几何体中,AC⊥BC,四边形DCBE为矩形,点F,M分别为AB,CD的中点.
(Ⅰ)求证:FM∥平面ADE;
(Ⅱ)求证:平面ACD⊥平面ADE.
如图,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求证:平面ABC1⊥平面A1ACC1;
(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A﹣BE﹣P的大小.
(Ⅰ)求证:ED⊥CD;
(Ⅱ)求证:AD∥MN;
(Ⅲ)若AD⊥ED,试问平面BCF是否可能与平面ADMN垂直?若能,求出 的值;若不能,说明理由.
试题篮