试题 试卷
题型:证明题 题类:常考题 难易度:普通
如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°.分别以直角边AC和斜边AB向外作等边△ACD、等边△ABE.过点E,作EF⊥AB,垂足为F,连结DF.
求证:
(1)AC=EF;
(2)四边形ADFE是平行四边形.
如图,四边形ABCD是矩形,AB=6,BC=8,点E在线段AD上,把△ABE沿直线BE翻折,点A落在点A′,EA′的延长线交BC于点F,
(1)如图(1),求证:FE=FB;
(2)当点E在边AD上移动时,点A′的位置也随之变化,
①当点A′恰好落在线段BD上时,如图(2),求AE的长;
②在运动变化过程中,设AE=x,CF=y,求y与x的函数关系式,试判断EF能否平分矩形ABCD的面积?若能,求出x的值;若不能,则说明理由;
(3)当点E在边AD上运动时,点D与点A′之间的距离也随之变化,请直接写出点D与点A′之间距离的变化范围.
试题篮