试题

试题 试卷

logo

题型:解答题 题类:常考题 难易度:普通

韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2 , 则x1+x2=﹣ , x1•x2= , 阅读下面应用韦达定理的过程:

若一元二次方程﹣2x2+4x+1=0的两根分别为x1、x2 , 求x12+x22的值.

解:该一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0

由韦达定理可得,x1+x2=﹣=﹣=2,x1•x2===﹣

x12+x22=(x1+x22﹣2x1x2

=22﹣2×(﹣

=5

然后解答下列问题:

(1)设一元二次方程2x2+3x﹣1=0的两根分别为x1 , x2 , 不解方程,求x12+x22的值;

(2)若关于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的两根分别为α,β,且α22=4,求k的值.

返回首页

试题篮