试题 试卷
题型:单选题 题类:常考题 难易度:普通
如图所示,用1个边长为c的小正方形和直角边长分别为a,b的4个直角三角形,恰好能拼成一个新的大正方形,其中a,b,c满足等式c2=a2+b2 , 由此可验证的乘法公式是( )
图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(左图),把余下的部分拼成一个矩形(右图),根据两个图形中阴影部分的面积相等,可以验证 ( )
大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x(x+y)=2x2+2xy就可以用图的面积表示.(1)请写出图(2)所表示的代数恒等式: _______ ;(2)请写出图(3)所表示的代数恒等式: ________ ;(3)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2 .
小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2 , 对于方案一,小明是这样验证的:
a2+ab+ab+b2=a2+2ab+b2=(a+b)2
请你根据方案二、方案三,写出公式的验证过程.
方案二:
方案三:
试题篮