试题 试卷
题型:解答题 题类:常考题 难易度:困难
北京市海淀区2019-2020学年高三上学期数学期末试卷
(Ⅰ)求证: 平面 ;
(Ⅱ)求证: ;
(Ⅲ)求直线 与平面 所成角的正弦值.
如图甲:⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB= , ∠DAB= , 沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,根据图乙解答下列各题:
(Ⅰ)若点G是的中点,证明:FG∥平面ACD;
(Ⅱ)求平面ACD与平面BCD所成的锐二面角的余弦值.
长方体ABCD﹣A1B1C1D1中,AA1= , AB=BC=2,O是底面对角线的交点.
(Ⅰ)求证:B1D1∥平面BC1D;
(Ⅱ)求证:A1O⊥平面BC1D;
(Ⅲ)求三棱锥A1﹣DBC1的体积.
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求异面直线PD与CM所成角的正弦值.
(I)设点E在线段PC上,若 ,求证:DE∥平面PAB;
(II)求证:平面PBC⊥平面PAB.
①若l与m为异面直线,l⊂α,m⊂β,则α∥β;
②若α∥β,l⊂α,m⊂β,则l∥m;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中真命题的个数为( )
试题篮