试题 试卷
题型:综合题 题类:真题 难易度:普通
如图,AB是⊙O的直径,AB=6,过点O作OH⊥AB交圆于点H,点C是弧AH上异于A、B的动点,过点C作CD⊥OA,CE⊥OH,垂足分别为D、E,过点C的直线交OA的延长线于点G,且∠GCD=∠CED.
如图,直线y=x+6与y轴交于点A,与x轴交于点B,点M是射线AB上一动点(点M不与点A、B重合),以点M为圆心,MA长为半径的圆交y轴于另一点C,直线MC与x轴交于点D,点E是线段BD的中点,射线ME交⊙M于点F,连接OF.
(1)若MA=2,求C点的坐标;
(2)若D点的坐标为(4,0),求MC的长;
(3)当OF=MA时,直接写出点M的坐标.
小军的证明思路是:如图(2),连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
老师表扬了小军,并且告诉小军和小俊:在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积之间的关系表示有关线段间的关系,从而把要论证的线段之间的关系转化为面积的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,这种方法称为“面积法”.
请你使用“面积法”解决下列问题:
试题篮