题型:单选题 题类:常考题 难易度:普通
人教新课标A版选修2-3数学3.2独立性检验的基本思想及其初步应用同步检测
在验证吸烟与否与患肺炎与否有关的统计中,根据计算结果,认为这两件事情无关的可能性不足1%,那么 的一个可能取值为( )
在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,
其中 为样本容量。
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
状况 有无喝茶 | 失眠 | 不失眠 | 合计 |
晚上喝绿茶 | 15 | 35 | 50 |
晚上不喝绿茶 | 4 | 46 | 50 |
合计 | 19 | 81 | 100 |
由已知数据可以求得:K2==7.86,则根据下面临界值表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
可以做出的结论是( )
对某班学生是爱好体育还是爱好文娱进行调查,根据调查得到的数据,所绘制的二维条形图如图.
(1)根据图中数据,制作2×2列联表;
(2)若要采用分层抽样的方法从男生中共抽取5名候选人,再从5人中选两人分别做文体活动协调人,求选出的两人恰好是一人更爱好文娱,另一人更爱好体育的学生的概率;
(3)是否可以认为性别与是否爱好体育有关系?
参考数据:
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.
(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
≥170cm | <170cm | 总计 | |
男生身高 | |||
女生身高 | |||
总计 |
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式:K2=
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
关注 | 不关注 | 合计 | |
年轻人 | 30 | ||
中老年人 | |||
合计 | 50 | 50 | 100 |
试题篮