试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:普通
已知等差数列{a
n
}的公差d>0,若a
1
+a
2
+a
3
+...+a
2013
=2013at(t
, 则t=( )
A、
2014
B、
2013
C、
1007
D、
1006
举一反三
已知等差数列{a
n
}一共有12项,其中奇数项之和为10,偶数项之和为22,则公差为( )
设函数
是定义在R上的奇函数,且当x
0时,
单调递减,若数列
是等差数列,且
, 则
的值 ( )
如果等差数列
中,
, 那么
等于( )
等差数列{a
n
}中,a
1
+a
6
=12,a
4
=7,则a
9
的值为{#blank#}1{#/blank#}
已知在等比数列{a
n
}中,a
1
=1,且a
2
是a
1
和a
3
﹣1的等差中项.
(1)求数列{a
n
}的通项公式;
(2)若数列{b
n
}满足b
n
=2n﹣1+a
n
(n∈N
*
),求{b
n
}的前n项和S
n
.
等差数列{a
n
}中,若S
20
=180,则a
6
+a
10
+a
11
+a
15
=( )
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册