试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:普通
四川省成都市高新区2018-2019学年高三上学期文数“一诊”模拟考试试卷
如图,在矩形
中,
,
,
,
,现分别沿
将矩形折叠使得
与
重合,则折叠后的几何体的外接球的表面积为( )
A、
B、
C、
D、
举一反三
一个体积为8cm
3
的正方体的顶点都在球面上,则球的体积是( )
四面体ABCD的四个顶点都在某个球O的表面上,△BCD是边长为3
的等边三角形,当A在球O表面上运动时,四面体ABCD所能达到的最大体积为
,则四面体OBCD的体积为( )
如图(1),五边形PABCD是由一个正方形与一个等腰三角形拼接而成,其中∠APD=120°,AB=2,现将△PAD进行翻折,使得平面PAD⊥平面ABCD,连接PB,PC,所得四棱锥P﹣ABCD如图(2)所示,则四棱锥P﹣ABCD的外接球的表面积为( )
四棱锥
P
ABCD
的三视图如图所示,四棱锥
PABCD
的五个顶点都在一个球面上,
E
,
F
分别是棱
AB
,
CD
的中点,直线
EF
被球面所截得的线段长为
2
,则该球的表面积为( )
如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
为圆
上的点,
,
,
,
分别是以
为底边的等腰三角形.沿虚线剪开后,分别以
为折痕折起
,
,
,
使得
重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为{#blank#}1{#/blank#}.
已知三棱锥
的侧棱都相等,侧棱的中点分别为
,
,
,棱
的中点为
,
平面
.且
,
.若四面体
的每个顶点都在球
的球面上,则该球面与三棱锥
侧面的交线总长为( )
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册