2023年中考数学精选真题实战测试6 因式分解B

修改时间:2023-01-07 浏览次数:78 类型:二轮复习 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题(每题3分,共30分)

二、填空题(每空3分,共18分)

三、解答题(共8题,共72分)

  • 17. 因式分解:a3﹣9a.
  • 18. 已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.

  • 19. 设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.
  • 20. 如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.

    (1) 请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;

    (2) 已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.

  • 21. 由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)

    示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)

    (1) 尝试:分解因式:x2+6x+8=(x+)(x+);

    (2) 应用:请用上述方法解方程:x2﹣3x﹣4=0.

  • 22. 对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.
    (1) 请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;
    (2) 如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)= .求满足D(m)是完全平方数的所有m.
  • 23. 对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
    (1) 计算:F(243),F(617);
    (2) 若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k= ,当F(s)+F(t)=18时,求k的最大值.
  • 24. 若一个两位数十位、个位上的数字分别为 ,我们可将这个两位数记为 ,易知 ;同理,一个三位数、四位数等均可以用此记法,如 .
    (1) 【基础训练】
    解方程填空:

    ①若 ,则

    ②若 ,则

    ③若 ,则

    (2) 【能力提升】
    交换任意一个两位数 的个位数字与十位数字,可得到一个新数 ,则 一定能被整除, 一定能被整除, 一定能被整除;(请从大于5的整数中选择合适的数填空)
    (3) 【探索发现】
    北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532-235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.

    ①该“卡普雷卡尔黑洞数”为

    ②设任选的三位数为 (不妨设 ),试说明其均可产生该黑洞数.

试题篮