试题 试卷
题型:单选题 题类:常考题 难易度:普通
新疆自治区北京大学附属中学新疆分校2018-2019学年高二上学期数学10月月考数试卷
如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP= .
(Ⅰ)求证:AB⊥PC;
(Ⅱ)在线段AD上是否存在点Q,使得直线CQ和平面BCP所成角θ的正弦值为?若存在,请说明点Q位置;
若不存在,请说明不存在的理由.
①PC∥平面OMN;
②平面PCD∥平面OMN;
③OM⊥PA;
④直线PD与直线MN所成角的大小为90°.
其中正确结论的序号是{#blank#}1{#/blank#}.(写出所有正确结论的序号)
已知矩形ABCD的长AB=4,宽AD=3,将其沿对角线BD折起,得到四面体A﹣BCD,如图所示,给出下列结论:
①四面体A﹣BCD体积的最大值为 ;
②四面体A﹣BCD外接球的表面积恒为定值;
③若E、F分别为棱AC、BD的中点,则恒有EF⊥AC且EF⊥BD;
④当二面角A﹣BD﹣C为直二面角时,直线AB、CD所成角的余弦值为 ;
⑤当二面角A﹣BD﹣C的大小为60°时,棱AC的长为 .
其中正确的结论有{#blank#}1{#/blank#}(请写出所有正确结论的序号).
①底面是矩形的平行六面体是长方体;
②棱长都相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④相邻两个面垂直于底面的棱柱是直棱柱;
⑤各侧面是全等的等腰三角形的棱锥一定是正棱锥;
⑥三棱锥的顶点在底面上的射影是底面三角形的垂心,则这个棱锥的三条侧棱长相等.
试题篮