试题 试卷
题型:解答题 题类:常考题 难易度:普通
高中数学人教版 选修2-3(理科) 第三章 统计案例3.2独立性检验的基本思想及其初步应用
①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③若数据x1 , x2 , x3 , …,xn的方差为1,则2x1 , 2x2 , 2x3 , …,2xn的方差为2;
④对分类变量X与Y的随机变量k2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大.
其中真命题的个数为( )
喜欢数学课
不喜欢数学课
合计
男
30
60
90
女
20
110
50
150
200
经计算K2≈6.06,根据独立性检验的基本思想,约有{#blank#}1{#/blank#} (填百分数)的把握认为“性别与喜欢数学课之间有关系”.
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.
(Ⅰ)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(Ⅱ)根据频率分布直方图填写下面2×2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.
甲班(A方式)
乙班(B方式)
总计
成绩优秀
成绩不优秀
附:K2=(此公式也可写成x2=)
试题篮