题型:解答题 题类:常考题 难易度:普通
2017-2018学年北师大版数学七年级下册同步训练:6.2.1 频率的稳定性
密码破译本质上是一个寻找偶然事情规律的一种游戏.为了简明,我们以英语例子加以说明.
如果要传递的消息是用英语写的,你可以随意地用两个数字来代替英语中的一个字母,比如为叙述方便,用00,01,02,…25来代替26个英文字母,而每个单词之间用26隔开.当接到这样编排密码时首先要对所有的数码在密码中出现的次数进行统计,算出每个数码出现的频率.再逐步分析出每个数码代表的是哪个字母,弄清了这个问题,密码也就能破译出来了.假如你收到的密码中有一段是:
070015152426130422262404001726191426241420
你能破译出这段密码吗?
摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数m | 63 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.63 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计:当实验次数为10000次时,摸到白球的频率将会接近{#blank#}1{#/blank#} ;(精确到0.1)
(2)假如你摸一次,你摸到白球的概率P(摸到白球)={#blank#}2{#/blank#}
试验次数 | 10 | 50 | 100 | 200 | 500 | 1000 | 2000 |
事件发生的 频率 | 0.245 | 0.248 | 0.251 | 0.253 | 0.249 | 0.252 | 0.251 |
估计这个事件发生的概率是{#blank#}1{#/blank#}(精确到0.01).
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率m/n | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
试题篮