试题 试卷
题型:解答题 题类:常考题 难易度:普通
贵州省贵阳市第一中学2018届高三12月文数月考试题
(Ⅰ)问: 上是否存在点 使得 平面 ?请说明理由;
(Ⅱ)在(Ⅰ)的条件下,若 平面 ,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥 外会有被捕的危险,求小鱼被捕的概率.
(Ⅰ)证明:DQ∥平面CPM;
(Ⅱ)若二面角C﹣AB﹣D的大小为 ,求∠BDC的正切值.
(Ⅰ)证明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一点E,使C1E∥平面A1BD?并证明你的结论.
试题篮