试题 试卷
题型:单选题 题类: 难易度:困难
浙江省宁波市宁海中学2024年创新班提前招生数学试卷
如图,扇形OAB的半径为4,圆心角∠AOB=90°,点C是上异于点A、B的一动点,过点C作CD⊥OB于点D,作CE⊥OA于点E,联结DE,过O点作OF⊥DE于点F,点M为线段OD上一动点,联结MF,过点F作NF⊥MF,交OA于点N.(1)当tanMOF=时,求的值;(2)设OM=x,ON=y,当时,求y关于x 的函数解析式,并写出它的定义域;(3)在(2)的条件下,联结CF,当△ECF与△OFN相似时,求OD的长.
如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF.
(1)如图,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;
(2)如图,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由;
(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由.
如图,在△ABC中,∠ACB=90º,AC>BC , 分别以AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG , 连接EF、GM、ND , 设△AEF、△CGM、△BND的面积分别为S1、S2、S3 , 则下列结论正确的是( )
试题篮