如图,AB∥CD,BE平分∠ABD,DE平分∠BDC,且BE与DE相交于点E,求证∠E=90° 证明:∵AB∥CD({#blank#}1{#/blank#})
∴∠ABD+∠BDC=180°({#blank#}2{#/blank#})
∵BE平分∠ABD({#blank#}3{#/blank#})
∴∠EBD=
{#blank#}4{#/blank#}({#blank#}5{#/blank#})
又∵DE平分∠BDC
∴∠BDE=
{#blank#}6{#/blank#}({#blank#}7{#/blank#})
∴∠EBD+∠EDB=
∠ABD+
∠BDC({#blank#}8{#/blank#})
=
(∠ABD+∠BDC)=90°
∴∠E=90°.
