试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:普通
湖北省荆门市2019-2020学年高一下学期期末数学试题
在三棱锥
中,
是边长为2的正三角形,
,
,
与平面
所成的角为60°,则三棱锥
的外接球的表面积为( )
A、
B、
C、
D、
举一反三
一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,0),(1,1,1),则该四面体的外接球的体积为 {#blank#}1{#/blank#}
已知球的表面积为
,则该球的体积为{#blank#}1{#/blank#}.
《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”这里所谓的“鳖臑(biē nào)”,就是在对长方体进行分割时所产生的四个面都为直角三角形的三棱锥.已知三棱锥
是一个“鳖臑”,
平面
,
,且
,
,则三棱锥
的外接球的表面积为{#blank#}1{#/blank#}.
若一个球的体积为
,则该球的表面积为{#blank#}1{#/blank#}.
设三棱锥
的每个顶点都在球
的球面上,
是面积为
的等边三角形,
,
,且平面
平面
.
18世纪英国数学家辛卜森运用定积分,推导出了现在中学数学教材中柱、锥、球、台等几何体
的统一体积公式
(其中
,
,
,
分别为
的上底面面积、下底面面积、中截面面积和高),我们也称为“万能求积公式”.例如,已知球的半径为
, 可得该球的体积为
;已知正四棱锥的底面边长为
, 高为
, 可得该正四棱锥的体积为
.类似地,运用该公式求解下列问题:如图,已知球
的表面积为
, 若用距离球心
都为1cm的两个平行平面去截球
, 则夹在这两个平行平面之间的几何体
的体积为{#blank#}1{#/blank#}
.
返回首页
相关试卷
四川省泸县第二中学2024-2025学年高一上学期1月期末数学试题
浙江省杭州市部分学校2025届高三上学期期末联考数学试题
湖南省长沙市长郡中学2024-2025学年高一上学期1月期末考试数学试题
湖南省长沙市第一中学2024-2025学年高三上学期阶段性检测(五)数学试题
广东省汕头市2024-2025学年高三上学期12月期末教学质量监测数学试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册