试题 试卷
题型:解答题 题类:常考题 难易度:普通
北京市房山区2019-2020学年高二下学期数学期末考试试卷
(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)设函数h(x)=f(x)+ , 求函数h(x)的单调区间;
(Ⅲ)若g(x)=﹣ , 在[1,e](e=2.71828…)上存在一点x0 , 使得f(x0)≤g(x0)成立,求a的取值范围.
①﹣3是函数y=f(x)的极值点;
②﹣1是函数y=f(x)的最小值点;
③y=f(x)在x=0处切线的斜率小于零;
④y=f(x)在区间(﹣3,1)上单调递增.
则正确命题的序号是{#blank#}1{#/blank#}.
(1)求在点处的切线方程;
(2)若不等式恒成立,求k的取值范围;
(3)求证:当时,不等式成立.
试题篮