试题 试卷
题型:解答题 题类:模拟题 难易度:普通
北京市西城区2021届高三数学一模试卷
(Ⅰ)求a的值及函数f(x)的极值;
(Ⅱ)证明:当x>0时,x2<ex;
(Ⅰ)求函数f(x)的图象在点(0,f(0))的切线方程;
(Ⅱ)设函数h(x)=f(x)﹣ln(x+1),当x∈[0,+∞)时,h(x)≤x恒成立,求实数a的取值范围.
(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)设函数h(x)=f(x)+ , 求函数h(x)的单调区间;
(Ⅲ)若g(x)=﹣ , 在[1,e](e=2.71828…)上存在一点x0 , 使得f(x0)≤g(x0)成立,求a的取值范围.
(Ⅰ)若函数f(x)图象在点(0,1)处的切线方程为x﹣2y+1=0,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)若a>0,g(x)=x2emx , 且对任意的x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求实数m的取值范围.
试题篮