试题 试卷
题型:综合题 题类:模拟题 难易度:困难
2017年吉林省长春市南关区中考数学一模试卷
如图,直线y=x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.
某车间接到加工一批零件的任务,准备派甲、乙两名工人参与完成.乙比甲晚参加工作一段时间,工作期间甲工人因有事停工5天,若两人分得的工作量相等,各自的工作效率一定,他们各自的工作量y(个)随工作时间x(天)变化的图象如图所示,则有下列说法:
(1)甲工人的工作效率为60个/天;
(2)乙工人每天比甲工人少生产10个零件;
(3)该车间接到的工作任务为生产零件300个;
(4)甲、乙两人实际生产时间相同.其中正确的个数是( )
时间x(分钟)
…
10
20
30
40
水量y(m3)
3750
3500
3250
3000
①乙车比甲车晚出发2h;
②乙车的平均速度为60km/h;
③甲车检修后的平均速度为l20km/h;
④两车第二次相遇时,它们距出发地320km.
试题篮