试题
试题
试卷
登录
注册
当前位置:
首页
题型:填空题
题类:常考题
难易度:困难
函数恒成立问题+++++++++++++3
已知函数f(x)=x
2
+(a﹣1)x+4,g(x)=x
2
+(a+1)x+a+4,若不存在实数x
0
, 使得
,则实数a的取值范围为
.
举一反三
已知函数f(x)=﹣x
2
+ax+b(a,b∈R)对任意实数x都有f(1+x)=f(1﹣x)成立,若当x∈[﹣1,1]时f(x)>0恒成立,则b的取值范围{#blank#}1{#/blank#}
已知函数f(x)=x
2
﹣2x,g(x)=mx+2,∀x
1
∈[﹣2,2],∃x
2
∈[﹣2,2],使得g(x
1
)=f(x
2
),则m的取值范围是{#blank#}1{#/blank#}.
函数f(x)=x
2
﹣2ax+a在区间(﹣∞,1)上有最小值,则函数
在区间(1,+∞)上一定( )
已知函数f(x)=|2x+1|+|2x﹣3|.
已知函数
,(
,
).
设函数
.
返回首页
相关试卷
四川省泸县第二中学2024-2025学年高一上学期1月期末数学试题
浙江省杭州市部分学校2025届高三上学期期末联考数学试题
湖南省长沙市长郡中学2024-2025学年高一上学期1月期末考试数学试题
湖南省长沙市第一中学2024-2025学年高三上学期阶段性检测(五)数学试题
广东省汕头市2024-2025学年高三上学期12月期末教学质量监测数学试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册