试题 试卷
题型:填空题 题类:常考题 难易度:普通
进行简单的合情推理
甲:如果乙获奖,那么我就没获奖;
乙:甲没有获奖,丁也没有获奖;
丙:甲获奖或者乙获奖;
丁:如果丙没有获奖那么乙获奖.
竞赛结果只有1人获奖且4人预测恰有3人正确,则获奖.
sin(α+β)=sinαcosβ+cosαsinβ﹣﹣﹣﹣﹣﹣①
sin(α﹣β)=sinαcosβ﹣cosαsinβ﹣﹣﹣﹣﹣﹣②
由①+②得sin(α+β)+sin(α﹣β)=2sinαcosβ﹣﹣﹣﹣﹣﹣③
令α+β=A,α﹣β=β 有α= ,β= 代入③得 sinA+sinB=2sin cos .
如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1 , P2 , P3 , P4},点P∈Ω,过P作直线lP , 使得不在lP上的“▲”的点分布在lP的两侧.用D1(lP)和D2(lP)分别表示lP一侧和另一侧的“▲”的点到lP的距离之和.若过P的直线lP中有且只有一条满足D1(lP)=D2(lP),则Ω中所有这样的P为{#blank#}1{#/blank#}.
试题篮