试题 试卷
题型:解答题 题类:模拟题 难易度:普通
2017年广西桂林市、崇左市高考数学一模试卷(理科)
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F1、F2分别为椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同两点M,N,记△F1MN的内切圆的面积为S,求当S取最大值时直线l的方程,并求出最大值.
(Ⅰ)求抛物线E的方程;
(Ⅱ)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.
(Ⅰ)求C1 , C2的标准方程;
(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足 ?若存在,求出直线方程;若不存在,说明理由.
试题篮