试题 试卷
题型:解答题 题类:常考题 难易度:普通
2015-2016学年河北省邯郸市高二上学期期末数学试卷(理科)
如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.
已知四边形ABCD满足AD∥BC,BA=AD=DC=BC=a,E是BC的中点,将△BAE沿AE折起到△B1AE的位置,使平面B1AE⊥平面AECD,F为B1D的中点.
(1)证明:B1E∥平面ACF;
(2)求平面ADB1与平面ECB1所成锐二面角的余弦值.
(Ⅰ)求证:BO⊥平面AA1C1C;
(Ⅱ)求二面角A﹣BC1﹣B1的余弦值.
(Ⅰ)求证:平面 平面PAB.
(Ⅱ)求平面PAB与平面PCD所成的锐二面角的余弦值.
试题篮