题型:解答题 题类:常考题 难易度:普通
概念:如果一个n×n矩阵(教材中表现为方格图)的每行,每列及两条对角线的元素之和都相等,且这些元素都是从1到n的自然数,这样的矩阵就称为n阶幻方.有关幻方问题的研究在我国已流传了两千多年,这是一类形式独特的填数字问题.下面介绍一种构造三阶幻方方法﹣﹣﹣杨辉法:(如图(1))口诀:“九子斜排,上下对易,左右相更,四维挺出”
学以致用:
(1)请你将下列九个数:﹣18、﹣16、﹣14、﹣12、﹣10、﹣8、﹣6、﹣4、﹣2,分别填入方格1中,使得每行、每列、每条对角线上的三个数之和都相等;
(2)将方格2中左边方格中的9个数填入右边方格中,使每一行、每一列、每条对角线中的三个数相加的和相等;
(3)将9个连续自然数填入方格3的方格内,使每一横行、每一竖行及两条对角线的3个数之和都等于60;
(4)用﹣3~5这九个数补全方格4中的幻方.
方格1
方格2
6 | 6 | 6 |
8 | 8 | 8 |
10 | 10 | 10 |
方格3
方格4
试题篮