试题 试卷
题型:综合题 题类:常考题 难易度:普通
我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2 , 也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2 , 这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3 . 若正方形EFGH的边长为2,则S1+S2+S3= {#blank#}1{#/blank#}.
①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.
其中正确结论序号是{#blank#}1{#/blank#} .
试题篮