湘教版数学九年级上册同步训练《4.1 正弦和余弦》

修改时间:2021-09-26 浏览次数:207 类型:同步测试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

二、填空题

三、解答题

  • 17. 在 中, 的对边分别为a,b,c, ,求c的值.
  • 18. 在△ABC中,∠C=90°,BC=24cm,cosA= ,求这个三角形的周长.
  • 19. 如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cosB的值.

  • 20.

    如图①为一种平板电脑保护套的支架效果图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架.平板电脑的下端N保持在保护套CB上,不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图②,其中AN表示平板电脑,M为AN上的定点,AN=CB=20cm,AM=8cm,MB=MN,我们把∠ANB叫做倾斜角,根据以上数据,判断倾斜角能小于30°吗?请说明理由.

  • 21. △ABC,∠C=90°,BC=3,AB=5,求sinA,cosA的值.

  • 22. 阅读材料,回答问题:

    小聪学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠=30°,BC═a=1,AC=b= ,AB=c=2,那么 = =2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着 = = 的关系.

    这个关系对于一般三角形还适用吗?为此他做了如下的探究:

    (1) 如图2,在R△ABC中,∠C=90°,BC=a,AC=b,AB=C,请判断此时“ = = ”的关系是否成立?
    (2) 完成上述探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c,请判断此时“ = = ”的关系是否成立?并证明你的判断.(提示:过点C作CD⊥AB于D,过点A作AH⊥BC,再结合定义或其它方法证明).

试题篮