云南省中考数学真题汇编(近几年)2 方程与不等式

修改时间:2021-08-25 浏览次数:125 类型:二轮复习 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 不等式组 ,的解集在以下数轴表示中正确的是(   )
    A . B . C . D .
  • 2. 若一元二次方程 有两个不相等的实数根,则实数a的取值范围是(    )
    A . B . C . D .
  • 3. 某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是(   )
    A . 1600元 B . 1800元 C . 2000元 D . 2400元
  • 4. 若关于x的不等式组 的解集为x>a,则a的取值范围是( )
    A . a<2 B . a≤2 C . a>2 D . a≥2
  • 5. 关于x的一元二次方程x2﹣2 x+m=0有两个不相等的实数根,则实数m的取值范围是(   )
    A . m<3 B . m>3 C . m≤3 D . m≥3
  • 6. 甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为( )
    A . = B . = C . = D . =
  • 7. 若整数 使关于 的不等式组 ,有且只有45个整数解,且使关于 的方程 的解为非正数,则a的值为(   )
    A . -61或-58 B . -61或-59 C . -60或-59 D . -61或-60或-59

二、填空题

三、解答题

  • 13. “30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措.机场、车站、出租车、景区、手机短信……,“30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质.刚刚过去的“五·一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用AB两种客房一天,供当天使用.下面是有关信息:今天用2000元租到A客房的数量与用1600元租到B客房的数量相等.今天每间A客房的租金比每间B客房的租金多40元.请根据上述信息,分别求今年5月1日该旅行社租用的AB两种客房每间客房的租金.
  • 14. 某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?
  • 15. 为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.
  • 16. 甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?
  • 17. 某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?

四、综合题

  • 18. 众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:

    A地(元/辆)

    B地(元/辆)

    大货车

    900

    1000

    小货车

    500

    700

    现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.

    (1) 这20辆货车中,大货车、小货车各有多少辆?
    (2) 求 的函数解析式,并直接写出 的取值范围;
    (3) 若运往A地的物资不少于140吨,求总运费y的最小值.
  • 19. (列方程(组)及不等式解应用题)

    水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)

    (1) 求每立方米的基本水价和每立方米的污水处理费各是多少元?
    (2) 如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?
  • 20. 某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.


    甲种原料(单位:千克)

    乙种原料(单位:千克)

    生产成本(单位:元)

    A商品

    3

    2

    120

    B商品

    2.5

    3.5

    200

    设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:

    (1) 求y与x的函数解析式(也称关系式),并直接写出x的取值范围;
    (2) x取何值时,总成本y最小?

试题篮