湖北省襄阳市2021年中考数学试卷

修改时间:2024-07-13 浏览次数:342 类型:中考真卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 下列各数中最大的是(   )
    A . -3 B . -2 C . 0 D . 1
  • 2. 下列计算正确的是(   )
    A . B . C . D .
  • 3. 如图, ,重足为 ,则 等于(   )

    A . 40° B . 45° C . 50° D . 60°
  • 4. 若二次根式 在实数范围内有意义,则 的取值范围是(   )
    A . B . C . D .
  • 5. 如图所示的几何体的主视图是(   )

    A . B . C . D .
  • 6. 随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为 ,下面所列方程正确的是(   )
    A . B . C . D .
  • 7. 正多边形的一个外角等于60°,这个多边形的边数是(   )
    A . 3 B . 6 C . 9 D . 12
  • 8. 不透明袋子中装有除颜色外完全相同的2个红球和1个白球,从袋子中随机摸出2个球,下列事件是必然事件的是(   )
    A . 摸出的2个球中至少有1个红球 B . 摸出的2个球都是白球 C . 摸出的2个球中1个红球、1个白球 D . 摸出的2个球都是红球
  • 9. 我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiǎ)生其中,出水一尺,引葭赴岸,适与岸齐.间水深几何.”(丈、尺是长度单位,1丈 尺,)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度是多少?则水深为(   )

    A . 10尺 B . 11尺 C . 12尺 D . 13尺
  • 10. 一次函数 的图象如图所示,则二次函数 的图象可能是(   )

    A . B . C . D .

二、填空题

  • 11. 据统计,2021年“五·一”劳动节小长假期间,襄阳市约接待游客2270000人次.数字2270000用科学记数法表示为.
  • 12. 不等式组 的解集是.
  • 13. 中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“---”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“---”上方的概率是.

  • 14. 从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度 (单位: )与它距离喷头的水平距离 (单位: )之间满足函数关系式 ,喷出水珠的最大高度是 .

     

  • 15. 点 的外心,若 ,则 .
  • 16. 如图,正方形 的对角线相交于点 ,点 在边 上,点 的延长线上, 于点 ,则 .

三、解答题

  • 17. 先化简,再求值: ,其中 .
  • 18. 如图,建筑物 上有一旗杆 ,从与 相距 处观测旗杆项部 的仰角为52°,观测旗杆底部 的仰角为45°,求旗杆 的高度(结果保留小数点后一位.参考数据: ).

  • 19. 为庆祝中国共产党建党100周年,某校举行了“红色华诞,党旗飘扬”党史知识竞赛.为了解竞赛成绩,抽样调查了七,八年级部分学生的分数,过程如下:

    ( 1 )收集数据从该校七.八年级学生中各随机抽取20名学生的分数,其中八年级的分数如下:

    81  83  84  85  86  87  87  88  89  90

    92  92  93  95  95  95  99  99  100  100

    ( 2 )整理、描述数据按如下分段整理描述样本数据:

    分数

    人数

    年级

    七年级

    4

    6

    2

    8

    八年级

    3

    4

    7

    ( 3 )分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:

    年级

    平均数

    中位数

    众数

    方差

    七年级

    91

    89

    97

    40.9

    八年级

    91

    33.2

    根据以上提供的信息,解答下列问题:

    ①填空:

    ②样本数据中,七年级甲同学和八年级乙同学的分数都为90分,同学的分数在本年级抽取的分数中从高到低排序更靠前(填“甲”或“乙”):

    ③从样本数据分析来看,分数较整齐的是年级(填“七”或“八”);

    ④如果七年级共有400人参赛,则该年级约有人的分数不低于95分.

  • 20. 如图, 的对角线.

    (1) 作对角线 的垂直平分线,分别交 于点 (尺规作图,不写作法,保留作图痕迹);
    (2) 连接 .求证:四边形 为菱形.
  • 21. 小欣在学习了反比例函数的图象与性质后,进一步研究了函数 的图象与性质.其研究过程如下:
    (1) 绘制函数图象

    ①列表:下表是 的几组对应值,其中   ▲  ;

    -4

    -3

    -2

    0

    1

    2

    -1

    =2

    -3

    3

    2

    ②描点:根据表中的数值描点 ,请补充描出点

    ③连线:用平滑的曲线顺次连接各点,请把图象补充完整.

    (2) 探究函数性质

    判断下列说法是否正确。

    ①函数值 的增大而减小:

    ②函数图象关于原点对称:

    ③函数图象与直线 没有交点.

  • 22. 如图,直线 经过 上的点 ,直线 交于点 和点 交于点 ,与 交于点 .

    (1) 求证: 的切线;
    (2) 若 ,求图中阴影部分面积.
  • 23. 为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:

    进价(元/斤)

    售价(元/斤)

    鲢鱼

    5

    草鱼

    销量不超过200斤的部分

    销量超过200斤的部分

    8

    7

    已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.

    (1) 求 的值;
    (2) 老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼 斤(销售过程中损耗不计).

    ①分别求出每天销售鲢鱼获利 (元),销售草鱼获利 (元)与 的函数关系式,并写出 的取值范围;

    ②端午节这天,老李让利销售,将鲢鱼售价每斤降低 元,草鱼售价全部定为7元斤,为了保证当天销售这两种鱼总获利 (元)的最小值不少于320元,求 的最大值.

  • 24. 在 中, 是边 上一点,将 沿 折叠得到 ,连接 .

    (1) 特例发现:如图1,当 落在直线 上时,

    ①求证:

    ②填空: 的值为  ▲  ;

    (2) 类比探究:如图2,当 与边 相交时,在 上取一点 ,使 于点 .探究 的值(用含 的式子表示),并写出探究过程;
    (3) 拓展运用:在(2)的条件下,当 的中点时,若 ,求 的长.
  • 25. 如图,直线 轴分别交于 ,顶点为 的抛物线 过点 .

    (1) 求出点 的坐标及 的值;
    (2) 若函数 时有最大值为 ,求 的值;
    (3) 连接 ,过点 的垂线交 轴于点 .设 的面积为 .

    ①直接写出 关于 的函数关系式及 的取值范围;

    ②结合 的函数图象,直接写出 的取值范围.

试题篮