四川省成都市东部新区2020-2021学年七年级上学期数学期末考试试卷

修改时间:2024-07-13 浏览次数:386 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. ﹣3的绝对值是(   )
    A . ﹣3 B . 3 C . - D .
  • 2. 下列图形绕虚线旋转一周,便能形成圆锥体的是(  )
    A . B . C . D .
  • 3. 垃圾分类已经刻不容缓!有资料表明,一粒废旧的纽扣电池大约会污染60万升水.请将60万用科学记数法表示为(  )
    A . 6×104 B . 6×105 C . 60×104 D . 0.6×106
  • 4. 下列计算正确的是(  )
    A . ﹣y2﹣y2=0 B . x3y﹣2xy3=﹣xy3 C . x3+x=2x4 D . 4ax﹣2ax=2ax
  • 5. 为完成以下任务,你认为最适合采用普查方式的是(  )
    A . 了解一批灯泡的使用寿命 B . 了解我国七年级学生每周在家劳动的时间 C . 了解七年级(1)班同学中哪个月份出生的人数最多 D . 了解成都市民双十一期间在淘宝网上的购物喜好
  • 6. 已知x=5是方程ax-8=20+a的解,则a的值是(   )
    A . 3 B . 7 C . -3 D . -7
  • 7. 如图,∠AOB=∠COD=90°,若∠BOD=150°,则∠BOC的度数为(  )

    A . 150° B . 120° C . 90° D . 60°
  • 8. 若 xy2a﹣1与﹣5xb﹣2ya是同类项,则a+b的值为(  )
    A . 4 B . 3 C . 2 D . 1
  • 9. 下列结论中,错误的是(  )
    A . 整数和分数统称为有理数 B .  b2是三次单项式 C . 0没有倒数 D . 若a表示一个有理数,则﹣a不一定是负数
  • 10. 图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n个图形中有(   )个三角形(用含n的代数式表示).

    A . B . C . D .

二、填空题

三、解答题

  • 20. 计算:
    (1) ( )×36;
    (2) 23÷[(﹣2)3﹣(﹣4)].
  • 21.  
    (1) 化简:2a2﹣ (ab+a2)﹣8ab.
    (2) 先化简再求值:﹣(x2y+3xy﹣4)+3(x2y﹣xy+2),其中|x﹣2|+(y+1)2=0.
  • 22. 解方程
    (1) 4(x+0.5)+x=7;
    (2) .
  • 23. 某公司销售甲、乙两种球鞋,去年共卖出12200双,今年甲种鞋卖出的数量比去年增加6% ,乙种鞋卖出的数量比去年减少5% ,两种鞋的总销量增加了50双,去年甲、乙两种球鞋各卖了多少双?
  • 24. 加强劳动教育是学校贯彻“五育并举”的重要举措.为了解学生参加各项劳动的情况,某校对七年级部分学生进行了随机问卷调查,其中一个问题是“你每周在家参加家务劳动的时间是多少?”,共有如下四个选项:

    A.1小时以下

    B.1~2小时(不包含2小时)

    C.2~3小时(包含2小时)

    D.3小时以上

    图①、图②是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:

    (1) 填空:本次问卷调查一共调查了名学生;
    (2) 请将图①的条形统计图补充完整,并求出图②中D部分所对应的圆心角度数;
    (3) 若该校共有1800名学生,请你估计全校可能有多少名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)?
  • 25. 如图1,直线AB上任取一点O,过点O作射线OC(点C在直线AB上方),且∠BOC=2∠AOC,以O为顶点作∠MON=90°,点M在射线OB上,点N在直线AB下方,点D是射线ON反向延长线上的一点.

    (1) 求∠COD的度数;
    (2) 如图2,将∠MON绕点O逆时针旋转α度(0°<α<180°),若三条射线OD、OC、OA,当其中一条射线与另外两条射线所夹角的度数之比为1:2时,求∠BON的度数.
  • 26. 已知A=a﹣2ab+b2 , B=a+2ab+b2.
    (1) 求 (B﹣A)的值;
    (2) 若3A﹣2B的值与a的取值无关,求b的值.
  • 27. 成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).
    (1) 请用含x的代数式分别表示出购买A、B公司体育用品的费用;
    (2) 当购买A、B两个公司体育用品的费用相等时,求此时x的值;
    (3) 已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:

    足球

    排球

    篮球

    1人用1个

    1人用1个

    2人共用1个

    若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.

  • 28. 如图1,数轴上有A、B两点,点A在原点左侧,点A对应的数与点B对应的数互为相反数.

    (1) 若AB=24,则点A对应的数是,点B对应的数是
    (2) 如图2,在(1)的条件下,动点P从点O出发以2个单位/秒的速度向右运动,设点P运动的时间为t秒,当PA=2PB时,求t的值;
    (3) 如图3,在(1)和(2)的条件下,动点P从点O出发的同时,动点M从点A出发以3个单位/秒的速度向右运动,动点N从点B出发以4个单位/秒的速度向左运动.在这三点运动过程中,其中任意两点相遇时,这两点立即以原速度向反方向运动,另一点保持原来的速度和方向,设运动时间为t(t>0)秒.求:当t的值为多少时,满足PM=PN?

试题篮