福建省三明市2019-2020学年九年级上学期数学期末试卷

修改时间:2024-07-13 浏览次数:213 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1.

    一个几何体的三视图如图所示,则这个几何体是(  )


    A . 球体 B . 圆锥 C . 棱柱 D . 圆柱
  • 2. 如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为(   )

    A . 2 B . 3 C . 4 D . 5
  • 3. 已知2x=3y , 则下列比例式成立的是(    )
    A . B . C . D .
  • 4. 如图,在平面直角坐标系中,正方形OABC的顶点O、B的坐标分别是(0,0),(2,0),则顶点C的坐标是(   )

    A . (1,1) B . (﹣1,﹣1) C . (1,﹣1) D . (﹣1,1)
  • 5. 三角尺在灯泡O的照射下在墙上形成的影子如图所示,OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是(   )

    A . 5:2 B . 2:5 C . 4:25 D . 25:4
  • 6. 在△ABC中,∠C=90°.若AB=3,BC=1,则cosB的值为(  )
    A . B . C . D . 3
  • 7. 已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为(  )

    A . 5 B . ﹣1 C . 2 D . ﹣5
  • 8. 如图,在菱形ABCD中, 于E, ,则菱形ABCD的周长是  

    A . 5 B . 10 C . 8 D . 12
  • 9. 如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为( )

    A . 1 B . 2 C . 3 D . 4
  • 10. 如图,一次函数y=﹣x+3的图象与反比例函数y=﹣ 的图象交于A,B两点,则不等式|﹣x+3|>﹣ 的解集为(  )

    A . ﹣1<x<0或x>4 B . x<﹣1或0<x<4 C . x<﹣1或x>0 D . x<﹣1或x>4

二、填空题

  • 11. 计算:sin30°+tan45°=
  • 12. 若关于x的一元二次方程x2+2x+m﹣2=0有实数根,则m的值可以是.(写出一个即可)
  • 13. 《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为
  • 14. 在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有个.
  • 15. 如图,已知点A,点C在反比例函数y= (k>0,x>0)的图象上,AB⊥x轴于点B,OC交AB于点D,若CD=OD,则△AOD与△BCD的面积比为.

  • 16. 如图,在四边形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,则四边形ABCD的面积为

三、解答题

  • 17. 解方程:x2﹣2x﹣2=0.

  • 18. 树AB和木杆CD在同一时刻的投影如图所示,木杆CD高2m,影子DE长3m;若树的影子BE长7m,则树AB高多少m?

  • 19. 已知:如图, 是正方形 的对角线 上的两点,且 .

    求证:四边形 是菱形.

  • 20. 如图所示是某路灯灯架示意图,其中点A表示电灯,AB和BC为灯架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于点C,求电灯A与地面l的距离.(结果精确到0.1m.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

  • 21. 如图,在矩形ABCD中,AB=4,BC=6,点M是BC的中点.

    (1) 在AM上求作一点E,使△ADE∽△MAB(尺规作图,不写作法);
    (2) 在(1)的条件下,求AE的长.
  • 22. 习总书记指出“垃圾分类工作就是新时尚”.某小区为响应垃圾分类处理,改善生态环境,将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a,b,c,并且设置了相应的垃圾箱:“厨余垃圾”箱、“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.
    (1) 若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,画树状图求垃圾投放正确的概率;
    (2) 为了了解居民生活垃圾分类投放的情况,现随机抽取了小区某天三类垃圾箱中总共10吨的生活垃圾,数据统计如下(单位:吨):

    A

    B

    C

    a

    3

    0.8

    1.2

    b

    0.26

    2.44

    0.3

    c

    0.32

    0.28

    1.4

    该小区所在的城市每天大约产生500吨生活垃圾,根据以上信息,试估算该城市生活垃圾中的“厨余垃圾”每月(按30天)有多少吨没有按要求投放.

  • 23. 某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.
    (1) 第一次购进的甲、乙两种水果各多少千克?
    (2) 由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.
  • 24. 如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y= 的图象交于点C,D,CE⊥x轴于点E,

    (1) 求反比例函数的表达式与点D的坐标;
    (2) 以CE为边作▱ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y= 的图象有公共点时,求a的取值范围.
  • 25. 已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.

    (1) 如图1,当点G在CD上时,求证:△AEF≌△DFG;
    (2) 如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;
    (3) 如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD.

试题篮