广西北师大平果附校2021届九年级上学期数学9月月考试卷

修改时间:2021-05-20 浏览次数:142 类型:月考试卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. 下列函数是二次函数的是(   )
    A . B . C . D .
  • 2. 二次函数 的图象的顶点坐标是(  )
    A . (1,3) B . ,3) C . (1, D .
  • 3. 二次函数 的最小值是 (   )
    A . 2 B . 2 C . 1 D . 1
  • 4. 将抛物线 向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为(    ).
    A . B . C . D . .
  • 5. 二次函数 的图象大致为(   )
    A . B . C . D .
  • 6. 抛物线y=(x﹣1)2﹣3的对称轴是(  )

    A . y轴 B . 直线x=﹣1 C . 直线x=1 D . 直线x=﹣3
  • 7. 抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是(  )

    A . m<2 B . m>2 C . 0<m≤2 D . m<﹣2
  • 8. 某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为 ,那么水流从喷出至回落到地面所需要的时间是( )
    A . 6s B . 4s C . 3s D . 2s
  • 9. 二次函数y=x2﹣x﹣2的图象如图所示,则函数值y<0时x的取值范围是(   )

    A . x<﹣1 B . x>2 C . ﹣1<x<2 D . x<﹣1或x>2
  • 10. 在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图(   )
    A . B . C . D .
  • 11.

    已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是(  )

    A . 有最小值0,有最大值3 B . 有最小值﹣1,有最大值0 C . 有最小值﹣1,有最大值3 D . 有最小值﹣1,无最大值
  • 12. 二次函数 )的图象如图所示,下列结论:① ;② ;③ ;④ ;⑤ ,其中正确的个数是(   )

    A . 2 B . 3 C . 4 D . 5

二、填空题

三、解答题

  • 19. 已知二次函数 ,当 时, .
    (1) 当 时,求y的值;
    (2) 写出该函数图象的开口方向、对称轴和顶点坐标,并求当x为何值时,函数y随x的增大而增大.
  • 20. 已知二次函数y=x2-2x-3.
    (1) 在平面直角坐标系中画出这个函数图象草图.

    (2) 结合图象回答:

    ①当 时,y有随着x的增大而       .

    ②不等式 的解集是        .

  • 21. 已知二次函数的图象以 为顶点,且过点 .
    (1) 求该函数的关系式;
    (2) 求该函数图象与x轴的交点坐标.
  • 22. 某梁平特产专卖店销售“梁平柚”,已知“梁平柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个.设涨价x元,每天总获利y元.
    (1) 求y与x的函数关系式?
    (2) 请你帮专卖店老板算一算,涨价多少元时才能使利润最大,并求出此时的最大利润?
  • 23. 如图,已知抛物线y= +mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),

    (1) 求m的值及抛物线的顶点坐标.
    (2) 点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
  • 24. 居民小区要在一块一边靠墙(墙长 )的空地上修建一个矩形花园 ,花园的一边靠墙,另三边用总长为 的栅栏围成.如图,若设花园的一边为 ,花园的面积为 .

    (1) 求y与x之间的数关系式,写出自变量x的取值范围;
    (2) 满足条件的花园面积能达到200 吗?如果能,求出此时的x的值;若不能,请说明理由;
    (3) 请结合题意判断:当x取何值时,花园的面积最大?最大面积为多少?
  • 25. 如图,在平面直角坐标系中,二次函数 (a>0)的图象与y轴交于点C,与x轴交于点A(﹣1,0)、B(3,0).

    (1) 写出C点的坐标;
    (2) 求这个二次函数的解析式;
    (3) 若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点且PE垂直于x轴,交AG于D,当点P运动到什么位置时,线段PD的长最大?求此时点P的坐标和DP的最大值.

试题篮