2017年上海市杨浦区中考数学三模试卷

修改时间:2024-07-12 浏览次数:1579 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. 已知实数a、b在数轴上的位置如图所示,则下列等式成立的是(   )

    A . |a+b|=a+b B . |a+b|=a﹣b C . |a+1|=a+1 D . |b+1|=b+1
  • 2. 下列各式中,当m为有理数时总有意义的是(   )
    A . (﹣2)m B . m C . m﹣2 D . m
  • 3. 如果a<b,那么下列不等式中一定成立的是(   )
    A . a2<ab B . ab<b2 C . a2<b2 D . a﹣2b<﹣b
  • 4. 将某班女生的身高分成三组,情况如表所示,则表中a的值是(   )

    第一组

    第二组 

    第三组

    频数

    6

    10

    a

    频率

    b

    c

    20%

    A . 2 B . 4 C . 6 D . 8
  • 5. 下列图形中,既是中心对称图形又是轴对称图形的是(   )

    A . 正六边形 B . 正五边形 C . 平行四边形 D . 正三角形
  • 6. 在△ABC中, = = ,那么 等于(   )

    A . + B . C . + D .

二、填空题

  • 7. 用代数式表示“a的相反数与b的倒数的和的平方”:
  • 8. 化简: =
  • 9. 如果关于x二次三项式x2﹣6x+m在实数范围内不能分解因式,那么m的取值范围是
  • 10. 方程5x4=80的解是

  • 11. 小李家离某书店6千米,他从家中出发步行到该书店,返回时由于步行速度比去时每小时慢了1千米,结果返回时多用了半小时.如果设小李去书店时的速度为每小时x千米,那么列出的方程是
  • 12. 若一次函数y=(1﹣2k)x+k的图象经过第一、二、三象限,则k的取值范围是

  • 13. 从一副扑克牌中取出的两组牌,一组为黑桃1、2、3,另一组为方块1、2、3,分别随机地从这两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和是合数的概率是
  • 14.

    某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.



  • 15. 若圆的半径是10cm,则圆心角为40°的扇形的面积是 cm2

  • 16. 在Rt△ABC中,∠C=90°,点D、E分别是边AC、AB的中点,点F在边BC上,AF与DE相交于点G,如果∠AFB=110°,那么∠CGF的度数是
  • 17. 如图,将梯形ABCD沿直线AC翻折,点B落在点E处,联结ED,如果∠B=60°,∠ACB=40°,ED∥AB,那么∠AED的度数为

  • 18. 如果正方形ABCD的边长为1,圆A与以CD为半径的圆C相交,那么圆A的半径R的取值范围是

三、解答题

  • 19. 先化简,再求值: ,其中x=6tan30°﹣2.
  • 20. 解方程组:

  • 21.

    已知抛物线y=ax2﹣2x+c的对称轴为直线x=﹣1,顶点为A,与y轴正半轴交点为B,且△ABO的面积为1.

    (1) 求抛物线的表达式;

    (2) 若点P在x轴上,且PA=PB,求点P的坐标.

  • 22.

    如图,甲船在港口P的南偏西60°方向,距港口86海里的A处,沿AP方向以每小时15海里的速度匀速行驶向港口P,乙船从港口P出发,沿南偏东45°方向匀速行驶驶离岗口P,现两船同时出发,2小时后乙船在甲船的正东方向,求乙船的航行速度(结果精确到个位,参考数据: ≈1.414, ≈1.732, ≈2.236)

  • 23. 已知:在正方形ABCD中,点E、F分别是CB、CD延长线上的点,且BE=DF,联结AE、AF、DE、DE交AB于点M.

    (1) 如图1,当E、A、F在一直线上时,求证:点M为ED中点;
    (2) 如图2,当AF∥ED,求证:AM2=AB•BM.
  • 24.

    已知:在平面直角坐标系中,直线y=﹣x与双曲线y= (k≠0)的一个交点为P( ,m).

    (1) 求k的值;

    (2) 将直线y=﹣x向上平移c(c>0)个单位后,与x轴、y轴分别交于点A,点B,与双曲线y= (k≠0)在x轴上方的一支交于点Q,且BQ=2AB,求c的值;

    (3) 在(2)的条件下,将线段QO绕着点Q逆时针旋转90°,设点O落在点C处,且直线QC与y轴交于点D,求BD:AC的值.

  • 25.

    已知:线段AB⊥BM,垂足为B,点O和点A在直线BM的同侧,且tan∠OBM=2,AB=5,设以O为圆心,BO为半径的圆O与直线BM的另一个交点为C,直线AO与直线BM的交点为D,圆O为直线AD的交点为E.

    (1) 如图1,当点D在BC的延长线上时,设BC=x,CD=y,求y关于x的函数解析式,并写出定义域.

    (2) 在(1)的条件下,当BC=CE时,求BC的长;

    (3) 当△ABO是以AO为腰的等腰三角形时,求∠ADB的正切值.

试题篮