山东省滨州2018-2019学年九年级上学期数学期中考试试卷

修改时间:2024-07-13 浏览次数:253 类型:期中考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. 下列环保标志中,是中心对称图形的是(   )
    A . B . C . D .
  • 2. 一元二次方程 配方后可变形为(    )
    A . (x+4)2=17 B . (x+4)2=15 C . (x-4)2=17 D . (x-4)2=15
  • 3. 若在平面直角坐标系内A( ,6),B(-2, )两点关于原点对称,则 的值为( )
    A . 9 B . -3 C . 3 D . 5
  • 4. 某县政府2018年投资0.5亿元用于保障性房建设,计划到2020年投资保障性房建设的资金为0.98亿元.如果从2018年到2020年投资此项目资金的年增长率相同,那么年增长率是(  )
    A . 30% B . 40% C . 50% D . 60%
  • 5. 若二次函数 的图像经过点(-2,0),则关于 的方程 的实数根为( )
    A . B . C . D .
  • 6. 已知圆内接正三角形的面积为 ,则该圆的内接正六边形的边心距是(   )
    A . B . C . D .
  • 7. 将抛物线 向左平移2个单位,再向下平移3个单位,得到的抛物线的函数表达式为(    )
    A . B . C . D .
  • 8. 如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是(   )

    A . (0,0) B . (﹣2,1) C . (﹣2,﹣1) D . (0,﹣1)
  • 9. 如图,PAPBDE分别切⊙O于AB、C,DE分别交PAPBDE , 已知P到⊙O的切线长为8cm , 则△PDE的周长为( )

    A . 16cm B . 14cm C . 12cm D . 8cm
  • 10. 如图,抛物线 与x轴交于点A,B,把抛物线与线段AB围成的图形记为C1 , 将Cl绕点B中心对称变换得C2 , C2 轴交于另一点C,将C2绕点C中心对称变换得C3 , 连接C与C3的顶点,则图中阴影部分的面积为(   )

    A . 32 B . 24 C . 36 D . 48
  • 11. 如图是二次函数 图象的一部分,其对称轴为 =﹣1,且过点(﹣3,0).下列说法:① <0;② =0;③ <0;④若(﹣5, ),( )是抛物线上两点,则 .其中说法正确的(    )

    A . ①② B . ②③ C . ①②④ D . ②③④
  • 12. 如图,在半径为4的⊙O中,CD为直径,AB⊥CD且过半径OD的中点,点E为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )

    A . B . C . D .

二、填空题

  • 13. 已知 是关于 的一元二次方程,则 的值为.
  • 14. 已知A(0,3),B(2,3)是抛物线 上两点,该抛物线的顶点坐标是.
  • 15. 如图所示是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的直径为.

  • 16. 圆锥形礼帽的底面半径为9cm,母线长为30cm,则这个圆锥形礼帽的侧面积为
  • 17. 如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O直径,AD=8,那么AB的长为

  • 18. 如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为 的中点,P是直径MN上一动点,则PA+PB的最小值为.

  • 19. 如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A´B´C´,其中点B的运动路径为 ,则图中阴影部分的面积为

  • 20. “如果二次函数 的图象与 轴有两个公共点,那么一元二次方程 有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若 )是关于 的方程 的两根且 则请用“<”来表示 的大小是.

三、解答题

  • 21. 用适当的方法解下列方程:
    (1)
    (2)
  • 22. 已知关于 的方程
    (1) 若方程总有两个实数根,求 的取值范围;
    (2) 若方程有一个实数根为1,求 的值和另一个根.
  • 23. 如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.

    (1) 求证:EA是⊙O的切线;
    (2) 求证:BD=CF.
  • 24. 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨 元( 为正整数),每个月的销售利润为 元.
    (1) 求 的函数关系式并直接写出自变量 的取值范围;
    (2) 每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?
    (3) 每件商品的售价定为多少元时,每个月的利润恰为2 200元?
  • 25. 已知正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,当∠MAN绕点A旋转到BM=DN时(如图1),则

    (1) 线段BMDNMN之间的数量关系是
    (2) 当∠MAN绕点A旋转到BM≠DN时(如图2),线段BMDNMN之间有怎样的数量关系?写出猜想,并加以证明;
    (3) 当∠MAN绕点A旋转到(如图3)的位置时,线段BMDNMN之间又有怎样的数量关系?请直接写出你的猜想.
  • 26. 已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

    (1) 求抛物线的解析式;
    (2) 当点P运动到什么位置时,△PAB的面积有最大值?
    (3) 过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

试题篮