试题
试题
试卷
登录
注册
当前位置:
首页
题型:填空题
题类:模拟题
难易度:容易
上海市徐汇区2018届高三下学期数学二模试卷
若一个球的体积为
,则该球的表面积为
.
举一反三
一个四面体ABCD的所有棱长都为
, 四个顶点在同一球面上,则此球的表面积为( )
圆柱形容器内盛有高度为6cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是{#blank#}1{#/blank#}cm.
已知某球的大圆周长为
,则这个球的表面积是( )
已知A,B,C为球O的球面上的三个定点,
,
,P为球O的球面上的动点,记三棱锥p一ABC的体积为
,三棱銋O一ABC的体积为
,若
的最大值为3,则球O的表面积为
如图,矩形
中,
为
的中点,将
沿直线
翻折成
,连结
,
为
的中点,则在翻折过程中,下列说法中所有正确的是( )
“牟合方盖”是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,当一个正方体用圆柱从纵横两侧面作内切圆柱体时,两圆柱体的公共部分即为“牟合方盖”,他提出“牟合方盖”的内切球的体积与“牟合方盖”的体积比为定值.南北朝时期祖暅提出理论:“缘幂势既同,则积不容异”,即“在等高处的截面面积总是相等的几何体,它们的体积也相等”,并算出了“牟合方盖”和球的体积.其大体思想可用如图表示,其中图1为棱长为
的正方体截得的“牟合方盖”的八分之一,图2为棱长为
的正方体的八分之一,图3是以底面边长为
的正方体的一个底面和底面以外的一个顶点作的四棱锥,则根据祖暅原理,下列结论正确的是:( )
返回首页
相关试卷
广东省汕头市2024-2025学年高三上学期12月期末教学质量监测数学试题
吉林省白城市第一中学2024-2025学年高二上学期12月期末考试数学试题
2025年1月普通高等学校招生全国统一考试适应性测试(八省联考)数学试题
广东省江门市新会第一中学2024-2025学年高二上学期期末考试数学试题
浙江省宁波市镇海中学2024-2025学年高一上学期期末考试数学试卷
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册