试题 试卷
题型:解答题 题类:常考题 难易度:普通
辽宁省沈阳市郊联体2017-2018学年高二下学期理数期中考试试卷
在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1
与B1D1交点,已知AA1=AB=1,∠BAD=60°.
(Ⅰ)求证:A1C1⊥平面B1BDD1;
(Ⅱ)求证:AO∥平面BC1D;
(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1 , 说明满足条件的点M的轨迹,并求OM的最小值.
如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.
试题篮