试题 试卷
题型:综合题 题类:常考题 难易度:普通
北京市东城区2016-2017学年七年级上学期数学期末考试试卷
如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2. (1)求抛物线对应的二次函数的解析式; (2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?
(1)求A、B两点的坐标;
(2)D为OA的中点,连接BD,过点O作OE⊥ BD于 F,交AB于E,求证∠BDO=∠EDA;
(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰Rt△PBM,其中PB=PM,直线MA交y轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围.
(1)比较大小:{#blank#}1{#/blank#} . (填“”或“”或“”)
(2)如图2,的平分线交直线于点P,记 , . 现保持三角板不动,将三角板从如图位置向左平移,若在运动过程中与始终平行,与满足的数量关系为{#blank#}2{#/blank#}.
试题篮