试题 试卷
题型:单选题 题类:真题 难易度:普通
勾股定理是几何中的一个重要定理。在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()
如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积分别是为1、13,则直角三角形两直角边和a+b={#blank#}1{#/blank#}
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a
∵S四边形ADCB=S△ACD+S△ABC= b2+ ab.
又∵S四边形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)
∴ b2+ ab= c2+ a(b﹣a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2 .
试题篮