题型:解答题 题类: 难易度:困难
湖北省新高考协作体2024届高三统一模拟考试数学试题(五
注:马尔科夫不等式为:设X为一个非负随机变量,其数学期望为 , 则对任意
, 均有
.
①当随机变量X为离散型随机变量,证明切比雪夫不等式(可以直接证明,也可以用下面的马尔科夫不等式来证明切比雪夫不等式);
②为了至少有的把握使种子的发芽率落在区间
, 请利用切比雪夫不等式估计农户种下种子数
的最小值.
贷款期限 | 6个月 | 12个月 | 18个月 | 24个月 | 36个月 |
频数 | 20 | 40 | 20 | 10 | 10 |
以上表中各种贷款期限的频数作为2017年自主创业人员选择各种贷款期限的概率.
(Ⅰ)某大学2017年毕业生中共有3人准备申报此项贷款,计算其中恰有两人选择贷款期限为12个月的概率;
(Ⅱ)设给某享受此项政策的自主创业人员补贴为X元,写出X的分布列;该市政府要做预算,若预计2017年全市有600人申报此项贷款,则估计2017年该市共要补贴多少万元.
支持 | 不支持 | 合计 | |
男性 | 20 | 5 | 25 |
女性 | 40 | 35 | 75 |
合计 | 60 | 40 | 100 |
附: .
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
K0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
试题篮